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Abstract

The first release of the MPI version of the LU NAS Parallel Benchmark (NPB2.0, ref.1)
performed poorly compared to its companion NPB2.0 codes. The later LU release (NPB2.1 &
2.2, refs.2,3) runs up to two and a half times faster, thanks to a revised point access scheme
and related communication scheme. The new scheme sends substantially fewer messages, is
cache “friendly”, and has a better load balance. We detail the observations and modifications
that resulted in this efficiency improvement, and show that the poor behavior of the original
code resulted from deriving a message passing scheme from an algorithm originally devised for
a vector architecture.

Introduction

The NAS Parallel Benchmark (NPB) LU code is a simplified compressible Navier-Stokes
equation solver. It employs the well-known symmetric point-Gauss-Seidel relaxation scheme
for solution of the discretized, linearized equations. The natural point access method for
this scheme is by row or by column. Unfortunately, such access amounts to a recurrence
relation on previously calculated values, and thus constitutes an array dependency for vector
architectures. The production flow solver after which LU was modeled was developed to run on
vector architecture machines, and was written carefully so as not to compromise vectorization.
The so-called diagonal access scheme, described by Venkatakrishnan et al. (see ref.1, and
below), removes the recurrence, so that full advantage can be taken of the vector pipeline
arithmetic units.

The processors in today’s parallel machines, however, typically rely on fast intermediate
caching systems to feed the cpu with a steady stream of data and instructions, since the main
memories of these machines are built of inexpensive DRAM for which data access is relatively
slow. Vector units are usually absent in these systems, so recurrence is not a major issue. But
compromising cache behavior can greatly deteriorate performance. The continued large-stride
memory access of the diagonal scheme results in frequent fetches of fresh cache lines of data
from main memory, and in ejection of lines from cache before all their information has been
used. The key to optimum cache behavior is the strong reuse of the data contained within
cache lines (data “locality”). Column-based point relaxation schemes exhibit such locality, and
are thus cache “friendly” numerical methods.

The first release of the LU MPI source code (in NPB2.0) was derived from a vector



implementation, from which it inherited the diagonal relaxation access method. The three-
dimensional Cartesian grid, whose physical z, y, and z coordinates are indexed with 7, j, and
k, respectively, is distributed using a two-dimensional domain decomposition; each processor
receives a vertical partition—pencil—of points (k-direction is in-processor). Active points
subject to relaxation are all interior grid points. Relaxation starts at an active corner point
(1 =2, j = 2) of the grid on the bottommost (k = 2) active grid plane. The next points to
be relaxed are on the diagonal consisting of only two active grid points (i + 7 = 5), also in the
bottommost active plane. This is followed by the adjacent diagonal consisting of three active
points (¢ + 7 = 6), and so on. These active diagonals sweep from one corner of the active
plane towards the opposite corner. The order in which points may be relaxed is determined by
the same criteria that govern a typical Gauss-Seidel relaxation process. For the LU code, the
discretization stencil at a given point (7,7, k) includes, in three dimensions, the six neighbor
points with indices (+ + 1,7, k), (1,5 + 1,k), and (¢,75,k £ 1). In this scheme, all relaxation
progress occurs on one k-plane at a time. Therefore, for this analysis we may concern ourselves
with only the (i,7) indexes, as if the problem were two-dimensional. With this in mind, the
Gauss-Seidel relaxation scheme with natural point ordering dictates that point (z,7) may be
relaxed only after points (¢ — 1,7) and (¢,7 — 1) have already been updated. For the diagonal
access method, we note that all points (¢, ) on a given diagonal may be defined as those for
which the sum ¢ + j is constant. These may be relaxed independently of each other but only
after all points on the previous diagonal have been relaxed. A little thought will suffice to see
that where a diagonal crosses partition boundaries, values at a neighbor point on the neighbor
processor will be required. These will be the endpoints of the previously updated diagonal on
the neighbor processor.

Communication in the NPB2.0 LU code occurs at each end of diagonals continued across
processors, and consists of the transmission of 5 floating point values (for density, z-, y- and
z-momentum, and energy) per end point. This transmission must occur before the relaxation
can proceed on the next diagonal where this subsequent diagonal is continued on an adjacent
processor; recall that points cannot be relaxed on any given diagonal before all points of the
previous diagonal in the same plane have been relaxed, regardless of which processor owns those
points. Therefore, communication must occur for each diagonal intersection with processor grid
boundaries. This explains the inordinate amount of communication of the original code (up
to 75% of total execution time, depending on problem size and number of processors, on an
IBM SP-Wide Node). Note that when a given processor has completed all diagonals in its
section of plane k = kg, it proceeds to the first diagonal (which consists of a single point) in its
section of the plane immediately above, i.e. k = kg + 1 (see ref.1). Once a diagonal intersects
with partitions owned by processors to the “east” and/or “north” (larger i- and/or j-values,
respectively), those processors can start execution concurrently. Execution of the relaxation
process is functionally data parallel.

Cost Model for Diagonal Scheme

We examine performance first for a specific example of the original NPB2.0 scheme.
Consider the Class A problem size (64® grid points), running on 64 processors. The processor
grid is an 8 by 8 grid, and each processor will have an 8 point (z direction) by 8 point (y



direction) by 64 point (z direction) grid portion. This vertical pencil consists of 64 “tiles” of
constant k, each measuring 8 by 8 grid points. The 15 diagonal sections within each tile vary
in size from 1 to 8 points, and back to 1. Exactly 279 floating point operations (FLOPs) are
required to relax each point. Assume an average cost of f seconds per FLOP, a communication
latency of [ seconds, and a transmission time of b seconds per byte. Note that processors with
pencils in the interior of the grid must send 5 double precision words at each of the two ends of
the diagonals in the “north-eastern” half of the tile. Note also that progress along diagonals in
this method occurs—functionally—in lockstep on participating processors, but that the lengths
of the sections of a diagonal owned by adjacent processors alternate. Clearly, adjacent sections
are of the exact same length only at the 1/4 and 3/4 “stages” within the tile, when actual
section length equals average length. Therefore, the largest diagonal section length must be
the one used to determine the effective computation cost for relaxing points, and a significant
load imbalance is necessarily incurred. Then each tile takes 88(279f) + 16(5 - 8b 4 1) seconds
to process. Of this time, 16(40b + 1) seconds is the time spent on communication, and the
effective number of points to be solved on each tile (i.e. the number compensating for the load
imbalance) is 88, not 64. This is true because processors operate on a diagonal in lock-step
fashion. For tiles of size 8 by 8, at least one of the involved processors will always have at least
4 points on its section of the diagonal, and up to 8 points for the largest section of diagonal.
For example, a processor relaxing the first singleton point on a tile has diagonal neighbors
whose sections of the same diagonal line each have 7 points to relax, so the effective number
of points here is 7. So instead of determining computation cost from the actual number of
points on the tile, whichis 64 =1+2+--- 4+ 7484+ 7+ -4+ 24 1, we use the effective
number of points, 88 =74+6+54+4+5+64+7+84+74+6+54+4+54+64T7.

More generally, consider a grid size of N3 points and number of processors P = 27 where
either p=2k or p =2k +1, k =1,2,3,.... Then each tile measures (N/2% x N/2*) points
when p = 2k, or (N/2% x N/2*+1) points when p = 2k + 1. Therefore, each tile takes
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seconds to process if p = 2k + 1. In both cases, the expression multiplying 279 f represents the
the effective number of points on each tile to relax, and the second term is the communication
cost.

Using these expressions we can now present a total cost model for the diagonal scheme.
As before, separate models describe the cases where p = 2k and p = 2k + 1. When p = 2k,
the total cost in seconds per time-step iteration is modeled by
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For p = 2k + 1, the total cost in seconds per time-step iteration is modeled by
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These expressions merit a few words of explanation. We introduce this explanation with
brief description of the LU time-step iteration loop. At the top of this loop, the right hand
side variables are scaled by the timestep. Then, for each horizontal plane (consisting of the
aforementioned tiles) in the computational grid, the left hand side expressions for the lower
triangular portion of the LU splitting are calculated (routine jacld) and then relaxed (routine
blts). Next for each horizontal plane, left hand side expressions for the upper triangular portion
of the LU splitting are calculated (routine jacu) and then relaxed (routine buts). Then, the
left hand side variables are updated by adding the latest change in the right hand side. Finally,
new right hand side variables are calculated (routine rhs).

We have already detailed the work and communication occurring in the relaxation routines
blts and buts and these portions are recognizable in the middle lines of the above two expres-
sions. There are a total of 953 floating point operations per grid point in the jacld and jacu
routines combined. This work is reflected in the final line of the previous two expressions. The
combined work and communication of the four routines jacld, blts, jacu, and buts is multiplied
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for odd powers of two processors. Unlike typical pipeline fill costs, this cost occurs not simply
once at inception and completion of processing, but is incurred at each timestep. This is

for even powers of two processors and



because of the symmetric nature of the symmetric successive overrelaxation (SSOR) method,
meaning that processing at each timestep proceeds from one corner of the computational grid
to the diagonally opposite corner, and then (the “symmetric” portion) in the reverse direction.
Recalling that the grid partition consists of vertical pencils through the grid, we see that it is at
these stages that processors are initially without work as the pipe fills and again as it flushes.
And, we repeat, this occurs at each timestep. The cost of the rhs routine is 485 floating point
operations per point. Here we have subsumed the cost of the time scaling of the right hand
side variables and the update of the left hand side. The remainder of the top lines in the total
cost expressions is the communication cost of the rhs routines. This communication consists of
an interchange between processors of adjacent face information. Two layers of face information
are exchanged between adjacent processors because the rhs routine calculates a fourth-order
dissipation model.

Description of New NPB2.3 LU Scheme

The pencil-based domain decomposition is the same as for the original scheme. As before,
each processor works on one tile at a time. Now, however, instead of relaxing points in a
diagonal ordering, the standard canonical ordering (column or row ordering) is used. Since the
code is implemented in Fortran, we select the column ordering. Relaxation starts at an active
corner point (1 = 2, j = 2) of the grid on the bottommost (k = 2) active grid plane. The next
point to be relaxed has index : = 3, 5 = 2, followed by : = 4, 5 = 2, and so on, until the end
of the first active column (: = N/p, j = 2) is reached on this first processor. Next, all points
on this processor in the next column (5 = 3) in this (k = 2)-tile are relaxed, followed by the
(j = 4)-column, and so on.

The first communication occurs only after all active points on this processor’s (k = 2)-tile
have been relaxed. The row of values just computed for which 7 assumes its maximum on this
tile are sent to the “eastern” neighbor. Likewise, the column of values for which j assumes its
maximum on this tile are sent to the “northern” neighbor. These neighboring processors now
begin to relax their points for £ = 2, and, simultaneously, the first processor proceeds to relax
points on its (k = 3)-tile. The communication that occurs is of significantly coarser granularity
than that of the original scheme. Note also that the ensuing pipeline is fully balanced, which
means that once the pipeline is filled (i.e. the pencil in the north-eastern corner of the grid is
reached), the load on all processors is completely balanced.

Cost Model for New NPB2.3 LU Scheme

We now estimate the cost for an interior processor tile. As in the above example, we
consider the Class A problem on 64 processors. As before, exactly 279 floating point operations
are required to relax each point. But now, each interior processor will receive and send a “row
edge” of values and a “column edge” of values. An edge of a tile consists of 8 points,
each requiring 5 values of 8 bytes each. Therefore, the time required for each interior tile is
approximately 64(279f) + 2(8 - 5 - 8b 4 1). Generalizing as before, we find that each tile takes
approximately
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seconds to process if p = 2k, and
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seconds to process if p = 2k + 1, the second term of these expressions representing the
communication cost.

Using these expressions we now present a total cost model for the new LU scheme. As
before, separate models describe the cases where p = 2k and p = 2k + 1. When p = 2k, the
total cost in seconds per time-step iteration is modeled by
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For p = 2k + 1, the total cost in seconds per time-step iteration is modeled by
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Note that the first and third lines of these expressions are the same as those for the NPB2.0
models, reflecting the fact that only the relaxation section communication scheme has changed.

F(N—2)—

Observations and Experiments

A glance at the expressions for the generalized time estimates of the relaxation sections of
both old and new schemes reveals that the effective computation has been reduced by approxi-
mately one third, due to the absence of any intra-pipeline load imbalance. The same reduction
holds for the pipeline fill time, since both old and new schemes have to complete work on 2NV —1
tiles successively before all processors are active. The total amount of data communicated is
the same in the old and new schemes, but it is in the number of communications that the
new scheme realizes its major savings. Whereas the original scheme performs 2N /p separate
communications per tile, the new scheme performs only 2. The savings in time is considerable
when communication latency is high, as it is for the majority of modern architectures.

The tables in the Appendix A show comparisons of elapsed times on an IBM SP-Wide
Node system for the original (NPB2.0) and new (NPB2.3) LU schemes for the standard class



A, B, and C problem sizes. More information on these benchmark problems, or the source code
or accompanying articles, is available on the web site at the URL given in ref.4. We note that
the timestep loop of the LU code includes not only the point relaxation and communication
sections studied here, but also routines for the formation of the matrix problem. These involve
substantial floating point work, as well as a small additional amount of communication. These
routines remain unchanged from the original to the new scheme. The small difference in
performance of the single-processor computations—which do not involve communication—is
due to the difference in the memory reference pattern. (Note that the cost models given are
not applicable to the single processor case.) The new scheme, which is column-based, accesses
array elements with minimal stride, whereas the old scheme incurs some performance penalties
due to its diagonal point access with the associated larger stride. But because at each point
a (b x 5)-matrix and a (5 x 1)-vector are accessed, there is still enough locality of memory
reference to not degrade the computational performance too much. A larger difference in
performance would be observed, for example, for a scalar relaxation problem.

We also note that the smaller problems benefit most from the implementation of the
new scheme. That is because the ratio of the communication granularity (defined as number
of FLOPs performed for each message sent) of the old scheme over that of the new scheme
scales as p/n, implying that for the smaller grids the communication improvement is largest.
We make the observation that the communication time of the original scheme constitutes a
dominant portion of the total time. This is no longer the case for the new scheme. Appendix
C gives communication only costs for the old and new scheme models.

We have generated numbers for the total cost of the old and new schemes. These are
given in Appendix B. Comparing these values with those in Appendix A, we see that the cost
model is mostly within 30% of the actual timing figures. Values are underpredicted, possibly
because the actual runs suffer from real effects such as processor contention by system daemons
and network contention. Where the real and predicted values agree, the agreement is likely
serendipitous, as such model accuracy is not to be expected. We have also included predictions
for performance of two large problem sizes, namely a 256 and a 5123 size. These we have
evaluated at up to 16384 processors (a 64 by 64 processor decomposition for the 5123 size).
For this large size problem and this many processors, each processor will still have a realistically
sized partition - 8 by 8 by 512 points - from which to construct difference stencils. We see
that scaling remains reasonable even to this many processors. In the absence of a machine
dependent model for communication network contention, however, these performance numbers
must be viewed with some caution.

Finally, we remark that the poor performance of the original scheme was due to an
insistence on data-parallel execution of the relaxation loops. When the more general MIMD
programming model is adopted, significant savings can be obtained from the coarse-grained

pipelining.
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Appendix A: Performance Measurements

LU Class A — IBM SP2 wn

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)

1 1923.35 1854.62 1.03

2 1013.83 936.92 1.08

4 558.80 483.44 1.15

8 363.55 255.59 1.42

16 215.84 134.27 1.60

32 141.03 73.67 1.91

64 92.62 42.69 2.16

128 74.69 29.74 2.51
LU Class B — IBM SP2 wn

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)

1 8314.27 8121.75 1.02

2 4255.50 4023.66 1.05

4 2326.52 2083.93 1.11

8 1347.51 1042.00 1.29

16 769.83 550.20 1.39

32 487.54 202.58 1.66

64 293.99 155.16 1.89

128 210.10 110.16 1.90
LU Class C — IBM SP2 wn

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)

8 4934.32 4163.62 1.18

16 2978.63 2202.81 1.35

32 1898.64 1152.62 1.64

64 1060.69 614.58 1.72

128 670.25 359.57 1.86




Appendix B: Performance Predictions From Models

(For IBM SP2 b=29Mbytes/sec, I=54 microsec)

LU Class A
Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)
4 695.8 519.6 1.33
8 389.3 269.9 1.44
16 213.9 141.0 1.51
32 130.3 76.8 1.69
64 76.1 42.7 1.78
128 52.1 26.1 1.99
256 32.9 16.9 1.94
LU Class B
Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)
4 2639.5 2081.7 1.26
8 1422.3 1064.6 1.33
16 758.1 545.8 1.38
32 434.8 286.6 1.51
64 242.8 151.8 1.59
128 153.2 84.9 1.80
256 91.5 49.0 1.86
512 65.4 31.7 2.05
1024 42.5 22.2 1.91




LU Class C

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)

4 10131.9 8293.5 1.22

8 5320.7 4203.8 1.26

16 2775.6 2132.9 1.30

32 1522.8 1097.7 1.38

64 821.8 567.0 1.44

128 484.8 302.1 1.60

256 276.0 163.3 1.69

512 181.0 94.6 1.91

1024 110.9 57.3 1.93

2048 82.9 40.1 2.06

4096 55.3 30.7 1.80

LU Size 256x256x256

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)

4 38891.4 32625.6 1.19

8 20075.7 16451.0 1.22

16 10320.5 8298.3 1.24

32 5489.0 4222.3 1.29

64 2889.5 2151.6 1.34

128 1619.5 1116.8 1.45

256 887.5 583.1 1.52

512 540.8 317.1 1.70

1024 314.9 176.2 1.78

2048 215.4 107.2 2.00

4096 135.7 69.4 1.95




LU Size 512x512x512

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)
4 303612.0 260364.2 1.16
8 154304.2 130719.9 1.18
16 78265.8 65636.2 1.19
32 40418.3 33094.8 1.22
64 20768.8 16693.3 1.24
128 11050.2 8493.1 1.30
256 5814.3 4327.7 1.34
512 3259.9 22459 1.45
1024 1785.6 11725 1.52
2048 1088.1 637.4 1.70
4096 633.3 354.1 1.78
8192 433.1 215.4 2.01
16384 272.8 139.4 1.95

Appendix C: Total Communication Cost From Model

(For IBM SP2 b=29Mbytes/sec, I=54 microsec)

LU Class A

Number NPB2.0 NPB2.3 Ratio

of Procs (secs) (secs)
4 121.9 12.2 9.93
8 94.2 10.2 9.16
16 64.6 8.2 7.84
32 51.2 7.4 6.89
64 35.9 6.5 5.48
128 29.7 6.4 4.57
256 21.6 6.3 3.39




LU Class B

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)

4 309.7 27.7 11.16

8 236.6 22.4 10.54

16 160.6 17.0 9.40

32 124.8 14.6 8.54

64 86.1 12.0 7.12

128 68.9 11.2 6.15

256 48.8 10.2 4.76

512 41.0 10.4 3.90

1024 30.2 10.6 2.83

LU Class C

Number NPB2.0 NPB2.3 Ratio
of Procs (secs) (secs)

4 781.2 64.6 12.09

8 592.8 50.9 11.62

16 399.8 37.2 10.72

32 306.7 30.6 10.00

64 209.1 23.9 8.74

128 163.7 20.9 7.80

256 113.7 17.9 6.35

512 92.2 17.1 5.38

1024 66.1 16.2 4.07

2048 56.4 17.2 3.28

4096 42.2 18.0 2.34




